Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Frontiers in public health ; 11, 2023.
Article in English | EuropePMC | ID: covidwho-2272645

ABSTRACT

Latin America is one of the regions in which the COVID-19 pandemic has a stronger impact, with more than 72 million reported infections and 1.6 million deaths until June 2022. Since this region is ecologically diverse and is affected by enormous social inequalities, efforts to identify genomic patterns of the circulating SARS-CoV-2 genotypes are necessary for the suitable management of the pandemic. To contribute to the genomic surveillance of the SARS-CoV-2 in Latin America, we extended the number of SARS-CoV-2 genomes available from the region by sequencing and analyzing the viral genome from COVID-19 patients from seven countries (Argentina, Brazil, Costa Rica, Colombia, Mexico, Bolivia, and Peru). Subsequently, we analyzed the genomes circulating mainly during 2021 including records from GISAID database from Latin America. A total of 1,534 genome sequences were generated from seven countries, demonstrating the laboratory and bioinformatics capabilities for genomic surveillance of pathogens that have been developed locally. For Latin America, patterns regarding several variants associated with multiple re-introductions, a relatively low percentage of sequenced samples, as well as an increment in the mutation frequency since the beginning of the pandemic, are in line with worldwide data. Besides, some variants of concern (VOC) and variants of interest (VOI) such as Gamma, Mu and Lambda, and at least 83 other lineages have predominated locally with a country-specific enrichments. This work has contributed to the understanding of the dynamics of the pandemic in Latin America as part of the local and international efforts to achieve timely genomic surveillance of SARS-CoV-2.

2.
Front Public Health ; 11: 1095202, 2023.
Article in English | MEDLINE | ID: covidwho-2272646

ABSTRACT

Latin America is one of the regions in which the COVID-19 pandemic has a stronger impact, with more than 72 million reported infections and 1.6 million deaths until June 2022. Since this region is ecologically diverse and is affected by enormous social inequalities, efforts to identify genomic patterns of the circulating SARS-CoV-2 genotypes are necessary for the suitable management of the pandemic. To contribute to the genomic surveillance of the SARS-CoV-2 in Latin America, we extended the number of SARS-CoV-2 genomes available from the region by sequencing and analyzing the viral genome from COVID-19 patients from seven countries (Argentina, Brazil, Costa Rica, Colombia, Mexico, Bolivia, and Peru). Subsequently, we analyzed the genomes circulating mainly during 2021 including records from GISAID database from Latin America. A total of 1,534 genome sequences were generated from seven countries, demonstrating the laboratory and bioinformatics capabilities for genomic surveillance of pathogens that have been developed locally. For Latin America, patterns regarding several variants associated with multiple re-introductions, a relatively low percentage of sequenced samples, as well as an increment in the mutation frequency since the beginning of the pandemic, are in line with worldwide data. Besides, some variants of concern (VOC) and variants of interest (VOI) such as Gamma, Mu and Lambda, and at least 83 other lineages have predominated locally with a country-specific enrichments. This work has contributed to the understanding of the dynamics of the pandemic in Latin America as part of the local and international efforts to achieve timely genomic surveillance of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Latin America/epidemiology , Pandemics , Genotype
3.
Phenomics ; 2(5): 312-322, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1943885

ABSTRACT

The clinical manifestations of COVID-19, caused by the SARS-CoV-2, define a large spectrum of symptoms that are mainly dependent on the human host conditions. In Costa Rica, more than 169,000 cases and 2185 deaths were reported during the year 2020, the pre-vaccination period. To describe the clinical presentations at the time of diagnosis of SARS-CoV-2 infection in Costa Rica during the pre-vaccination period, we implemented a symptom-based clustering using machine learning to identify clusters or clinical profiles at the population level among 18,974 records of positive cases. Profiles were compared based on symptoms, risk factors, viral load, and genomic features of the SARS-CoV-2 sequence. A total of 18 symptoms at time of diagnosis of SARS-CoV-2 infection were reported with a frequency > 1%, and those were used to identify seven clinical profiles with a specific composition of clinical manifestations. In the comparison between clusters, a lower viral load was found for the asymptomatic group, while the risk factors and the SARS-CoV-2 genomic features were distributed among all the clusters. No other distribution patterns were found for age, sex, vital status, and hospitalization. In conclusion, during the pre-vaccination time in Costa Rica, the symptoms at the time of diagnosis of SARS-CoV-2 infection were described in clinical profiles. The host co-morbidities and the SARS-CoV-2 genotypes are not specific of a particular profile, rather they are present in all the groups, including asymptomatic cases. In addition, this information can be used for decision-making by the local healthcare institutions (first point of contact with health professionals, case definition, or infrastructure). In further analyses, these results will be compared against the profiles of cases during the vaccination period. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-022-00058-x.

4.
Infect Genet Evol ; 92: 104872, 2021 08.
Article in English | MEDLINE | ID: covidwho-1202173

ABSTRACT

Genome sequencing is a key strategy in the surveillance of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Latin America is the hardest-hit region of the world, accumulating almost 20% of COVID-19 cases worldwide. In Costa Rica, from the first detected case on March 6th to December 31st almost 170,000 cases have been reported. We analyzed the genomic variability during the SARS-CoV-2 pandemic in Costa Rica using 185 sequences, 52 from the first months of the pandemic, and 133 from the current wave. Three GISAID clades (G, GH, and GR) and three PANGOLIN lineages (B.1, B.1.1, and B.1.291) were predominant, suggesting multiple re-introductions from other regions. The whole-genome variant calling analysis identified a total of 283 distinct nucleotide variants, following a power-law distribution with 190 single nucleotide mutations in a single sequence, and only 16 mutations were found in >5% sequences. These mutations were distributed through the whole genome. The prevalence of worldwide-found variant D614G in the Spike (98.9% in Costa Rica), ORF8 L84S (1.1%) is similar to what is found elsewhere. Interestingly, the frequency of mutation T1117I in the Spike has increased during the current pandemic wave beginning in May 2020 in Costa Rica, reaching 29.2% detection in the full genome analyses in November 2020. This variant has been observed in less than 1% of the GISAID reported sequences worldwide in 2020. Structural modeling of the Spike protein with the T1117I mutation suggests a potential effect on the viral oligomerization needed for cell infection, but no differences with other genomes on transmissibility, severity nor vaccine effectiveness are predicted. In conclusion, genome analyses of the SARS-CoV-2 sequences over the course of the COVID-19 pandemic in Costa Rica suggest the introduction of lineages from other countries and the detection of mutations in line with other studies, but pointing out the local increase in the detection of Spike-T1117I variant. The genomic features of this virus need to be monitored and studied in further analyses as part of the surveillance program during the pandemic.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Genetic Variation , Genomics , SARS-CoV-2/genetics , Costa Rica/epidemiology , Female , Humans , Male , Models, Molecular , Mutation , Phylogeny , Population Surveillance , Protein Conformation , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL